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ABSTRACT

In August 2018 and June 2019, NCEP upgraded the operational versions of the High-Resolution Rapid

Refresh (HRRR) and Global Forecast System (GFS), respectively. To inform forecasters and model

developers about changes in the capabilities and biases of these modeling systems over the western conter-

minous United States (CONUS), we validate and compare precipitation forecasts produced by the experi-

mental, preoperational HRRRv3 and GFSv15.0 with the then operational HRRRv2 and GFSv14 during the

2017/18 October–March cool season.We also compare the GFSv14 and GFSv15.0 with the operational, high-

resolution configuration of the ECMWF Integrated Forecasting System (HRES). We validate using obser-

vations fromAutomated Surface andWeather Observing System (ASOS/AWOS) stations, which are located

primarily in the lowlands, and observations from Snowpack Telemetry (SNOTEL) stations, which are located

primarily in the uplands. Changes in bias and skill from HRRRv2 to HRRRv3 are small, with HRRRv3

exhibiting slightly higher (but statistically indistinguishable at a 95% confidence level) equitable threat scores.

The GFSv14, GFSv15.0, and HRES all exhibit a wet bias at lower elevations and neutral or dry bias at upper

elevations, reflecting insufficient terrain representation. GFSv15.0 performance is comparable to GFSv14 at

day 1 and superior at day 3, but lags HRES. These results establish a baseline for current operational HRRR

and GFS precipitation capabilities over the western CONUS and are consistent with steady or improving

NCEP model performance.

1. Introduction

Upgrades to operational forecast systems introduce

challenges for both operational meteorologists andmodel

developers. Operational meteorologists rely on knowl-

edge of model biases and prior performance to make re-

liable weather forecasts and assess potential societal

impacts. Model developers require knowledge of model

capabilities to address model deficiencies and advance

model performance. Since 2018, NCEP has upgraded two

major operational forecast systems: the High-Resolution

Rapid Refresh (HRRR) and the Global Forecast System

(GFS). The HRRR operates at 3-km grid spacing and

provides short-range forecasts for the conterminous

United States (CONUS). The GFS operates at an effec-

tive grid spacing of 13km and provides short- to medium-

range global forecasts. Both modeling systems contribute

to the National Blend of Models (NBM), which heavily

informs NWS forecasts (Craven et al. 2018).

Although model validation is a component of the

development and upgrade cycle at NCEP, it does not

include detailed validation of regional precipitation

forecasts. Of concern for this paper are cool-season

(October–March) precipitation events over the western

CONUS, which are strongly influenced by the interac-

tion of synoptic systems with orography and often pro-

duce snow, posing critical challenges for transportation

and public safety (Andrey et al. 2001; Birkeland and

Mock 2001; Seeherman and Liu 2015). Atmospheric

rivers and other landfalling, extratropical disturbances

contribute a substantial fraction of total cool-season

precipitation over the region (Rutz et al. 2014; Barbero

et al. 2019), withmean precipitation generally increasing

with elevation (Daly et al. 1994). Nevertheless, indi-

vidual storm periods can feature precipitation–altitude

relationships that depart from that expected from cli-

matology, presenting a challenge for operational and

numerical weather prediction (Steenburgh 2003; James

and Houze 2005; Minder et al. 2008). Forecast skill also

decreases from the Pacific coast to the western interior,

even for relatively high-resolution forecast systems
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(Lewis et al. 2017; Gowan et al. 2018). This decrease may

reflect the finer-scale nature of the topography and the re-

duced spatial coherence of cool-season precipitation events

downstream of the Cascade–Sierra Ranges (Serreze et al.

2001; Parker and Abatzoglou 2016; Touma et al. 2018).

Recent studies indicate that model resolution contrib-

utes to spatial variations in precipitation bias and skill

among forecast systems over the western United States

(Gowan et al. 2018). Forecast systems that feature smooth

orography and fail to resolve terrain complexity sometimes

produce excessive lowland and insufficient upland precip-

itation. Downscaling can partially address this deficiency

(Lewis et al. 2017). Higher-resolution convection-allowing

models like the HRRR better resolve regional terrain

features and produce improved skill as measured by tra-

ditional skill scores (Gowan et al. 2018). Nevertheless, er-

rors at high resolution evolve more rapidly in time and can

contribute to deterioration in forecast skill at short lead

times (Lorenz 1969; Prein et al. 2015; Clark et al. 2016).

In this paper we examine the performance of the ex-

perimental, preoperational HRRRv3 and GFSv15.0 com-

pared to their predecessor operational versions, HRRRv2

andGFSv14, respectively. TheHRRRv3 upgrades include

an improved planetary boundary layer [Mellor–Yamada–

Nakanishi–Niino (MYNN); Nakanishi and Niino (2009)]

and a new, hybrid vertical coordinate (Simmons and

Strüfing 1983; Collins et al. 2004). TheGFSv15.0 features a

new finite volume cubed-sphere dynamical core (Chen

et al. 2018; Hazelton et al. 2018) and includes the GFDL

six-category bulk cloud microphysics scheme (described in

Chen and Lin 2013). We specifically evaluate cool-season

precipitation forecasts over the western CONUS, at both

lowland and upland locations, to identify modeling system

capabilities and biases for forecasters and model devel-

opers, as well as establish a baseline of current NCEP op-

erational model performance.

The remainder of this paper is organized as follows.

Section 2 describes the models and observational data

used for the evaluation, as well as the validation meth-

odology. Section 3 examines and describes the results and

performance of the experimental modeling systems rela-

tive to their operational predecessors and compares GFS

performance to the operational, high-resolution configu-

ration of the ECMWF Integrated Forecasting System

(HRES). A summary of the results follows in section 4.

2. Data and methods

a. Forecast systems

The HRRR is an hourly updating forecast system that

is nested within the 13-km Rapid Refresh (RAP) and

provides forecasts for the CONUS at 3-km grid spacing

(Benjamin et al. 2016; Myrick 2018). During the 2017/18

cool season, which is the focus of this study, NCEP pro-

duced operational forecasts with HRRRv2, whereas the

NOAA/Earth System Research Laboratory (ESRL) ran

the experimental HRRRv3. HRRRv2 uses the Advanced

Research version of WRF, version 3.6, with physics pack-

ages and assimilation procedures described in Benjamin

et al. (2016). HRRRv3 uses the Advanced Research ver-

sion of WRF version 3.8, with model physics, numerics,

assimilated datasets, and assimilation techniques de-

scribed by NOAA (2018). HRRRv2 forecasts were ob-

tained from the NCEP Operational Model Archive and

Distribution System (NOMADS), whereas HRRRv3

forecasts were provided by ESRL. The HRRRv3 be-

came operational at NCEP in August 2018.

The GFS is a global forecast system. During the 2017/18

cool season, NCEP produced operational forecasts using

GFSv14, a global spectral model with T1534 horizontal

resolution (;13km) for the initial 10-day forecast period.

Major GFS parameterization and data assimilation tech-

niques are described in McClung (2014), NWS (2016),

and Myrick (2017). The GFSv15.0 represents a major

upgrade and uses a finite volume cubed-sphere dynamical

core developed at GFDL with an effective horizontal

resolution comparable to GFSv14. Physics packages are

based on GFSv14, except for the replacement of the

Zhao–Carr microphysics scheme with the GFDL micro-

physics scheme (Yang 2018), updates or new parameter-

izations for ozone and water vapor photochemistry, and a

revised bare-soil evaporation scheme (Tallapragada and

Yang 2018). Operational GFSv14 forecasts andGFSv15.0

reforecasts were obtained from the NCEP Environmental

Modeling Center. Ultimately, the operational GFS was

upgraded from GFSv14 to GFSv15.1 in June 2019 rather

than GFS15.0, with GFSv15.1 including some improve-

ments that reduce but do not eliminate a near-surface cold

bias that led to excessive accumulated snow. However, we

focus on liquid precipitation equivalent and tests indicate

that GFSv15.0 and GFSv15.1 produce relatively similar

quantitative precipitation forecasts (A. Bentley, NCEP,

2019, personal communication).

We also compare GFSv14 and GFSv15.0 forecasts with

HRES, a global forecast model developed and run by

ECMWF. During the 2017/18 cool season, HRES was

based on the ECMWF Integrated Forecasting System

(IFS) cycle 43r3 with a 0.078 effective horizontal resolution
over an octahedral reducedGaussian grid (ECMWF2019).

Parameterizations are described by Roberts et al. (2018).

Operational HRES forecasts were provided by ECMWF.

b. Precipitation observations

Precipitation validation focuses on the CONUS west

of 102.58W and uses observations from the Automated
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Surface and Weather Observing System network op-

erated by the NWS, Federal Aviation Administration

(FAA), and Department of Defense (DoD), and the

Snowpack Telemetry network operated by the Natural

Resources Conservation Service (hereafter SNOTEL)

(Fig. 1). The former consists primarily of Automated

Surface Observing System (ASOS) and Automated

Weather Observing System (AWOS) units and is

hereafter referred to as ASOS/AWOS. ASOS stations

are maintained by NWS electronics technicians and

measure precipitation in 0.01-in. (0.254mm) incre-

ments using either a standard heated tipping bucket

with a vinyl alter-style wind shield or an all-weather

precipitation accumulation gauge with a Tretyakov

wind shield (Martinaitis et al. 2015). The standard

heated tipping buckets are implemented at a majority

of ASOS stations, but the all-weather precipitation

accumulation gauge has been installed at some sta-

tions since 2003 (NWS 2009; Martinaitis et al. 2015).

AWOS stations are maintained by the FAA or local

airport boards and use tipping buckets or all-weather

precipitation accumulation gauges that may be un-

shielded (FAA 2017). Additionally, we include auto-

mated precipitation observations from stationsmaintained

primarily by the Department of Defense and classified

as other in Fig. 1.

ASOS/AWOS precipitation gauge undercatch of snow-

fall increases with wind speed and can result in the

underreporting of liquid precipitation equivalent as

large as 20%–50% during snowfall (Greeney et al.

2005; Rasmussen et al. 2012; Martinaitis et al. 2015).

Additionally, losses due to evaporation or sublimation

can occur with the heated tipping bucket and snow can

stick to the orifice or sidewalls of the all-weather pre-

cipitation gauge, resulting in a delay in snowfall mea-

surement (Martinaitis et al. 2015).

ASOS/AWOS data were obtained from Synoptic

Data, a Public Benefit Corporation owned in part by the

University of Utah, using their Application Program

Interface (https://synopticlabs.org/synoptic/) and were

quality controlled following procedures described by

Horel et al. (2002) and in documentation available from

Synoptic Data. To reduce sampling issues, stations were

chosen that recorded five or more days with measurable

precipitation [i.e., $0.01 in. (0.254mm); Durre et al.

2013] and received $0.5 in. (12.7mm) of total accumu-

lated precipitation on days for which model forecasts

were available. The resulting 277 stations (Fig. 1)—situated

predominantly (but not exclusively) in lowland areas and

located mainly at airports—provided 6-h accumulated

precipitation observations, which were aggregated into

24-h totals. The 277 stations include 198 (out of a possible

FIG. 1. ASOS/AWOS (red) and SNOTEL (blue) stations used for this study with 30-arc-s

topography (km MSL; shaded). Station classification based on FAA (2020).
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224) NWS/FAAASOS stations, 39 (out of a possible 278)

NWS/FAA AWOS stations, and 40 additional (primarily

DoD) stations. Questions about the quality of AWOS

precipitation observations have been raised by operational

meteorologists and the elimination of a large fraction of

AWOS stations is consistent with those concerns. Results

were not strongly sensitive to the inclusion of the 39

AWOS stations.

The density of utilized AWOS/ASOS stations is var-

iable and greatest in the lowlands of western California,

Oregon, and Washington, but in southeast California,

southwest Arizona, and southern Nevada none of the

available AWOS/ASOS stations observe sufficient pre-

cipitation or days with measurable precipitation to be

included in the study.

SNOTEL stations are located at remote, sheltered,

upland locations. Accumulated precipitation is measured

hourly in 0.1-in. (2.54-mm) increments using a large-

storage gauge. SNOTEL precipitation measurements ex-

hibit an artificially driven diurnal cycle due to expansion

and contraction of fluid in the gauge (USDA 2014). We

limit this effect by using only 24-h accumulated precip-

itation measurements. Other errors are addressed by

quality controlling data according to the methods de-

scribed by Lewis et al. (2017), yielding data from 606

SNOTEL stations. Like ASOS/AWOS stations, under-

catch remains a likely source of error for SNOTEL

stations, although undercatch is typically smaller (10%–

15%) during snowfall than ASOS/AWOS stations due

to siting in wind-protected clearings (Ikeda et al. 2010).

Similarly, delays in measurement can also occur due to

snow sticking to the orifice or gauge walls. Thus, at

ASOS/AWOS and SNOTEL stations that receive

snowfall, it is likely that these sources of measurement

error artificially shift model precipitation biases higher

and reduce our ability to determine model accuracy.

Additional networks provide precipitation data for

the western CONUS, such as the Remote Automated

Weather Stations (RAWS) or theNWSCOOPnetwork.

Although these networks do provide some high-quality

observations, they are more heterogeneous and exhibit

varying quality. For example, some networks employ

unheated tipping buckets that misreport solid precipi-

tation (e.g., RAWS). Daly et al. (2007) and Hashimoto

et al. (2019) describe some of the measurement errors

and quality control issues associated with COOP data.

While likely valuable for future studies, data from these

networks was not included here due to the time needed

to develop more robust quality control techniques.

c. Validation

We validate model forecasts initialized between

0000 UTC 1 October 2017 and 1800 UTC 31 March

2018. The selection of the 2017/18 cool season reflects

the availability of forecasts from all five modeling

systems. To enable validation of 24-h precipitation

(hereafter daily precipitation) using HRRRv2 and

HRRRv3 forecasts, since the former only extends to

18 h, we combine the 6–18-h precipitation forecasts

from the 0600 UTC and 1800 UTC initialized fore-

casts. GFSv14, GFSv15.0, and HRES validation fo-

cuses on 12–36-h (hereafter day 1) and 60–84-h

(hereafter day 3) forecasts initialized at 0000 UTC

(for brevity, intermediate statistics for day 2 are omit-

ted). Periods when one or more model forecasts were

missing were not included, resulting in validation of

112 HRRRv2/HRRRv3 and 115 GFSv14/GFSv15.0/

HRES daily forecasts. This represents 62% and 63%

of the 182 cool-season days, respectively. To compare

modeled with observed precipitation, precipitation

forecasts are bilinearly interpolated to each station

location.

Bias ratio is the ratio of forecast to observed precipi-

tation integrated over the study period on days when

forecasts are available. Means are calculated using all

stations in each network. Voronoi-weighted (Weller

et al. 2009) and unweighted methods to calculate the

areal average bias ratios yielded statistically indiscern-

ible results using a two-proportion Z test, so figures

display only unweighted areal averages for simplicity.

Other validation metrics use daily precipitation, the

occurrence of which is sometimes referred to as an

event. Frequency bias, for example, is the ratio of the

number of forecast and observed daily precipitation

events in a given size bin.

Additional measures employed to evaluate daily

precipitation forecasts include the hit rate, false alarm

ratio, and equitable threat score, which are based on a

2 3 2 contingency table (Table 1). As summarized in

Mason (2003), hit rate (HR) is defined as

HR5
a

a1 c
, (1)

false alarm ratio (FAR) is defined as

FAR5
b

a1b
, (2)

TABLE 1. Contingency table used for validation.

Observed

Forecast Yes No

Yes Hit (a) False alarm (b)

No Miss (c) Correct rejection (d)
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and equitable threat score (ETS) as

ETS5
a2 a

ref

a2 a
ref

1 b1 c
, (3)

where

a
ref

5
(a1 c)(a1 b)

n
. (4)

These measures are calculated using absolute precipi-

tation amounts and percentile thresholds, the latter

defined relative to the amount distribution for each

model on all validation days, including those without

measurable precipitation. We evaluate these measures

using absolute precipitation thresholds and percentile

thresholds based on 2017/18 cool-season precipitation

events. The latter reduces the effects of model bias in the

evaluation of the spatial accuracy of model forecasts

(Roberts and Lean 2008; Mittermaier and Roberts 2010;

Dey et al. 2014; Gowan et al. 2018).

3. Results

a. Synopsis of 2017/18 cool-season precipitation

The 30-yr (1981–2010) averageOctober–March cool-

season precipitation exhibits a strong dependence of

precipitation on altitude across the western United

States (Daly et al. 1994). For the SNOTEL stations

used in this study, cool-season precipitation is greatest

at stations in the Coastal, Cascade, and Olympic

Mountains of the Pacific Northwest and locations in

the northwest interior (Fig. 2a). For the ASOS/AWOS

stations used in this study, cool-season precipita-

tion is greatest along and near the Pacific coast of

northern California, Oregon, andWashington and lower

FIG. 2. The 30-yr average accumulated cool-season precipitation at (a) SNOTEL and (b) ASOS/AWOS stations

[based on PRISM gridded climate data (Daly et al. 1994)], and 2017/18 cool-season total precipitation as a fraction

of PRISM climatology at (c) SNOTEL and (d) ASOS/AWOS stations.
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in the valleys and basins of southern California and

the western interior east of the Cascade–Sierra

crest (Fig. 2b).

Integrated across all ASOS/AWOS and SNOTEL

stations, the 2017/18 cool-season precipitation was

about 40% below average. SNOTEL stations in the far

north received near or slightly above-average precipi-

tation, whereas stations farther south received below-

average precipitation (Fig. 2c). This spatial pattern was

comparatively less distinct at ASOS/AWOS stations,

which exhibited less coherent regional patterns relative

to average, especially east of the Cascade–Sierra crest

(Fig. 2d). This likely reflects the relatively low fre-

quency and spatial coherence of precipitation events

east of the Cascade–Sierra crest (Rutz et al. 2014;

Touma et al. 2018), which leads to undersampling at

low elevation stations.

b. HRRR

During the 2017/18 cool season, the mean HRRRv2

bias ratio was 1.33 at ASOS/AWOS stations, indicating

an overall wet bias (Fig. 3a). However, the bias ratio

varied considerably from station to station, with a

standard deviation of 0.72. Forecasts for stations in

northern California, Oregon, and Washington west of

the Cascade–Sierra crest exhibited primarily near-

neutral or dry biases, whereas forecasts for stations

east of the Cascade–Sierra crest predominantly exhibited

near-neutral or wet biases. The HRRRv3 produced a

similar mean bias ratio and standard deviation of 1.32

FIG. 4. As in Fig. 3, but for SNOTEL stations.

FIG. 3. (a) HRRRv2 and (b) HRRRv3 bias ratios at ASOS/AWOS stations with 30-arc-s topography (as in Fig. 1).

Mean and standard deviation (SD) annotated.
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and 0.75, respectively, with a comparable spatial pattern

of dry and wet biases at individual stations (Fig. 3b). At

SNOTEL stations, the mean HRRRv2 bias ratio was

0.95, with greater consistency from station to station re-

flected in a low standard deviation (compared to forecasts

for ASOS/AWOS stations) of 0.24 (Fig. 4a). Regions

with larger dry (wet) biases include the Mogollon Rim

of Arizona and ranges of eastern Nevada (Bighorn

Mountains of Wyoming). The HRRRv3 was slightly

wetter with a mean bias ratio of 1.03 and a small increase

in standard deviation to 0.28 (Fig. 4b).

Frequency bias is the ratio of forecast to observed

event frequency as a function of the observed event size

(Fig. 5a). For convenience and following Lewis et al.

(2017), we refer to a frequency bias of 0.85–1.20 as ‘‘near

neutral’’ given the uncertainties in precipitation mea-

surement. At ASOS/AWOS stations, we present fre-

quency bias for events in four bins defined by lower

and upper bounds [0.127–1.27mm (0.005–0.05 in.), 1.27–

3.81mm (0.05–0.15 in.), 3.81–6.35mm (0.15–0.25 in.),

and 6.35–8.89mm (0.25–0.35 in.)], represented in each

graph by a central value. The lower bound is exclusive

and the upper bound inclusive for all but the lowest bin

[0.127–1.27mm (0.005–0.05 in.)], for which we use

model precipitation values $ 0.127mm (0.005 in.) and

observed precipitation values $ 0.254mm (0.01 in.).

Events . 8.89mm (0.35 in.) are not presented due to

the small sample size. HRRRv2 exhibited frequency

biases . 1 at all event sizes and weak overprediction

(i.e., bias ratio . 1.2) for events # 6.35mm (0.25 in.).

HRRRv3 frequency biases were closer to neutral for

events # 3.81mm (0.15 in.), but not significantly dif-

ferent from those of HRRRv2 at a 95% confidence

level, as determined using bootstrap resampling for

ratios of event frequency [subsequent statements of

confidence also use this technique (Choquet et al. 1999;

Hamill 1999)].

At SNOTEL stations, we present frequency bias for

events in five bins similarly defined by lower and upper

bounds [1.27–6.35mm (0.05–0.25 in.), 6.35–19.05mm

(0.25–0.75 in.), 19.05–31.75mm (0.75–1.25 in.), 31.75–

44.45mm (1.25–1.75 in.), and 44.45–57.15mm (1.75–

2.25 in.)], represented in each graph by a central value

(Fig. 5b). The lower bound is exclusive and the upper

bound inclusive for all but the lowest bin, for which we

use model precipitation values$ 1.27mm (0.05 in.) and

FIG. 5. HRRRv2 (red lines) and HRRRv3 (blue lines) frequency bias as a function of event

size at (a) ASOS/AWOS and (b) SNOTEL stations. Number of events sampled into each bin

shown in inset histograms. Green band shows 0.85–1.20 range defined as near neutral by the

authors. Whiskers display 95% confidence intervals as determined using bootstrap resampling.

JUNE 2020 CARON AND STEENBURGH 863

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:04 PM UTC



observed precipitation values $ 2.54mm (0.10 in.).

Events. 57.15mm (2.25 in.) are not presented due to

the small sample size. HRRRv2 frequency biases

are ,1 but fall within near-neutral bounds for all

events sizes except those #6.35mm (0.25 in.) where

underprediction occurs. HRRRv3 bias ratios are

higher for all events except those#6.35mm (0.25 in.),

consistent with the higher mean bias ratio, with slight

overprediction for events;38.1mm (1.5 in.), which is

the only bin in which the difference is significant at a

95% confidence level.

Bivariate histograms illustrate bias if frequent event

pairs fall above (overprediction) or below (under-

prediction) the 1:1 line and precision based on the

scatter of event pairs. Ideally, most event pairs fall along

or near the 1:1 line. At ASOS/AWOS stations, the

FIG. 7. As in Fig. 6, but for SNOTEL stations.

FIG. 6. Bivariate histograms of forecast and observed precipitation at ASOS/AWOS stations for (a) HRRRv2

and (b) HRRRv3. Green (blue) dots denote mean modeled (observed) event size for each observed (modeled)

event size in each bin. Dots not shown for bins with ,100 events.
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HRRRv2 bivariate histogram displays minimal skew-

ness about the 1:1 line, which suggests near-neutral

bias, but low precision, indicated by large scatter of

event pairs (Fig. 6a). The HRRRv3 bivariate histo-

gram similarly reveals minimal skewness but low

precision (Fig. 6b). Thus, while the model biases were

small, the large scatter indicates weak correlation

between forecasts and observations, a result that may

partly reflect undersampling of events at ASOS/AWOS

stations. At SNOTEL stations, the HRRRv2 bivariate

histogram exhibits near-neutral bias and moderate

precision (Fig. 7a). The HRRRv3 bivariate histogram

indicates similar performance (Fig. 7b). Altogether, the

HRRRv2 and HRRRv3 bias ratios, frequency biases,

and bivariate histograms indicate a near-neutral pre-

cipitation bias for total precipitation and most event

sizes, with HRRRv3 slightly wetter than HRRRv2. For

both, precision increases from lowland ASOS/AWOS

stations to upland SNOTEL stations. Low precision at

the lowland ASOS/AWOS stations may partially reflect

undersampling.

We next evaluate model skill using the traditional

metrics of HR, FAR, and ETS. Whereas the HR and

FAR examine how well the model captures events or

nonevents, the ETS measures skill relative to random

forecasts (drawn from the observed climatological

distribution). At ASOS/AWOS stations, as absolute

threshold increases, HRRRv2 HR decreases from 0.81

FIG. 8. HRRRv2 (red) and HRRRv3 (blue) verification metrics as functions of absolute thresholds at (left)

ASOS/AWOS and (right) SNOTEL stations. (a),(b) Hit rate. (c),(d) False alarm ratio. (e),(f) Equitable threat

score. Whiskers display 95% confidence intervals as determined using bootstrap resampling.
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to 0.64 (Fig. 8a), FAR increases from 0.32 to 0.35

(Fig. 8c), and ETS decreases from 0.52 to 0.46

(Fig. 8e). HRRRv3 HRs, FARs, and ETSs are larger

in comparison at most event thresholds, although

differences are not significant at a 95% confidence

level. At SNOTEL stations, HRRRv2 HR decreases

from 0.68 to 0.55 (Fig. 8b), FAR increases from 0.28

to 0.46 (Fig. 8d), and ETS decreases from 0.44 to

0.37 (Fig. 8f). Similar to ASOS/AWOS stations,

HRRRv3 HRs and FARs are larger than those of

HRRRv2 and the ETS is comparable to or slightly

higher at all thresholds. Although the differences in

HR and FAR are sometimes significant, specifically

at lower thresholds, differences in ETS are not sig-

nificant at a 95% confidence level. Comparison

of ASOS/AWOS and SNOTEL results indicates

higher ETS in the lowlands compared to the up-

lands. Although the thresholds used for each net-

work differ, this is true for ASOS/AWOS SNOTEL

thresholds that overlap.

Next, we convert absolute thresholds to percentile

thresholds for each modeling system and station net-

work according to Fig. 9. This helps to account for

model bias, although such biases are small for HRRRv2

and HRRRv3. As percentile threshold increases at

ASOS/AWOS stations, HRRRv2 HR decreases from

0.77 to 0.66 (Fig. 10a), FAR increases from 0.26 to 0.34

(Fig. 10c), and ETS decreases from 0.53 to 0.47

(Fig. 10e). Compared to HRRRv2, HRRRv3 HR and

ETS are larger and FAR is smaller, although the dif-

ferences are not significant at a 95% confidence level. As

percentile threshold increases at SNOTEL stations,

HRRRv2 HR decreases from 0.75 to 0.64 (Fig. 10b),

FAR varies between 0.41 and 0.27 (Fig. 10d), and ETS

decreases from 0.45 to 0.44 (Fig. 10f). The HRRRv3HR

and ETS are slightly higher and FAR slightly lower,

although the differences are not significant at a 95%

confidence level. Similar to the results for absolute

thresholds, ETS is higher at the lowland ASOS/AWOS

sites than the upland SNOTEL sites.

To summarize, comparison of HRRRv2 and HRRRv3

during the 2017/18 cool season indicates little change in

model biases and performance characteristics. Both

models were slightly wet at lowland ASOS/AWOS

stations and near neutral at upland SNOTEL stations.

At both ASOS/AWOS and SNOTEL stations, the

HRRRv3 exhibited higher HR and ETS and lower

FAR, but differences in ETS were not significant at a

95% confidence level. These results suggest a small, but

statistically undiscernible improvement fromHRRRv2

FIG. 9. Observed (gray) and forecast HRRRv2 (red) and HRRRv3 (blue) absolute and precipitation thresholds at

(a) ASOS/AWOS and (b) SNOTEL stations.
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to HRRRv3. We hypothesize that these differences are

likely not distinguishable to operational forecasters.

ETS was higher at ASOS/AWOS sites than upland

SNOTEL sites for both absolute and percentile

thresholds.

c. GFSv14, GFSv15.0, and HRES

At ASOS/AWOS stations, GFSv14 bias ratios indi-

cate that forecasts tended to be wet, with a mean bias

ratio of 1.65 on day 1 that decreases slightly to 1.57 on

day 3 (Figs. 11a,b). There are large standard deviations

on day 1 (1.05) and day 3 (1.02), which reflect large wet

biases at many stations. GFSv15.0 mean bias ratios are

slightly higher at 1.77 on day 1 and 1.65 on day 3

(Figs. 11c,d), with comparable standard deviations.

HRES forecasts were the wettest, with mean day-1 and

day-3 bias ratios of 1.80 and 1.91, respectively, and

comparable standard deviations (Figs. 11e,f). In con-

trast, at SNOTEL stations, mean GFSv14 day-1 and

day-3 bias ratios are 0.99 and 0.97, respectively, with

substantially lower standard deviations (Figs. 12a,b).

GFSv15.0 forecasts were similar, with day-1 and day-3

bias ratios of 1.00 and 0.96, respectively (Figs. 12c,d).

HRES forecasts exhibited a weak dry bias, with mean

day-1 and day-3 bias ratios of 0.88 and 0.91, respec-

tively (Figs. 12e,f).

Consistent with the high bias ratios, all three models

overpredicted the frequency of day-1 and day-3 pre-

cipitation events at ASOS/AWOS stations for all

event sizes (Fig. 13a). This problem was most acute in

FIG. 10. As in Fig. 8, but for precipitation thresholds.
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HRES forecasts, consistent with the larger HRES

wet bias. At SNOTEL stations, all three models ex-

hibited near-neutral or marginally low-frequency biases

on day 1 and day 3 for all event sizes (Fig. 13b).

Underprediction of event frequency was more apparent

at higher thresholds and increased from the GFSv15.0

to GFSv14 to HRES.

Bivariate histograms illustrate that GFSv14 event

pairs at ASOS/AWOS stations were skewed above the

1:1 line, which is consistent with the aforementioned

wet bias (Figs. 14a,b). Furthermore, the large scatter

of event pairs reflects low precision. The GFSv15.0

and HRES displayed similar skewness and scatter at

ASOS/AWOS stations (Figs. 14c–f). At SNOTEL

FIG. 11. (a) Day-1 GFSv14, (b) day-3 GFSv14, (c) day-1 GFSv15.0, (d) day-3 GFSv15.0, (e) day-1 HRES, and

(f) day-3 HRES bias ratios at ASOS/AWOS stations with 30 arc-s topography (as in Fig. 1). Mean and standard

deviation (SD) annotated.
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stations, the GFSv14 bivariate histogram exhibited

minimal skewness and, for small events, small scatter,

indicating near-neutral bias and moderately high pre-

cision (Fig. 15a). Precision declined, however, for

larger events and for longer lead times (cf. Figs. 15a,b).

The GFSv15.0 bivariate histograms exhibit similar

characteristics (Figs. 15c,d). HRES, however, skewed

below the 1:1 line and thus displayed slight underpredic-

tion, consistent with its weak dry bias (Figs. 15e,f).

Overall, these results indicate that all three global

models produce excessive lowland precipitation, but the

bias is neutral or dry in upland regions, with the HRES

featuring the largest upland underprediction, especially

for larger events.

HR and ETS are generally highest for HRES and

lowest for GFSv14 at both ASOS/AWOS and SNOTEL

stations on day 1 and day 3 (Figs. 16a,b,e,f). For FAR, dif-

ferences between the models are modest at ASOS/AWOS

FIG. 12. As in Fig. 11, but for SNOTEL stations.
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stations, but the drier HRES leads to much lower values

at SNOTEL stations, especially on day 1 (Figs. 16c,d).

Focusing on ETS as an overall indicator of model per-

formance, on day 1, theHRES produces the highest ETS

for all but the smallest [#1.27mm (0.05 in.)] events at

ASOS/AWOS stations and all events at SNOTEL sta-

tions, with the improvement relative to GFSv14 and

GFSv15.0 significant at a 95% confidence level in sev-

eral size bins (Figs. 16e,d). Although ETS declines by

day 3, the gap between HRES and GFSv15.0 is smaller

at both ASOS/AWOS and SNOTEL stations and not

significant at a 95% confidence level for all event sizes.

The gap between GFSv15.0 and GFSv14 also increases

from day 1 to day 3 for most event sizes. Similar to the

results for the HRRR versions, ETS for all three

global models is higher at lowland ASOS/AWOS sites

than upland SNOTEL sites, including thresholds that

overlap.

Figure 17 illustrates the relationship between absolute

thresholds and percentile thresholds for the three global

models. Validating based on percentile thresholds

helps account for model bias, which is more significant

for the three global models than the HRRR. Based on

these percentile thresholds, the HRES produces the

highest HR, lowest FAR, and highest ETS on day 1

and day 3 for all event sizes at both ASOS/AWOS and

SNOTEL stations (Fig. 18). The difference between

GFSv15.0 and GFSv14 is small on day 1, especially at

ASOS/AWOS stations, but increases by day 3, with

the former producing a higher HR, lower FAR, and

higher ETS in all categories. For ETS, the difference

between HRES and GFSv15.0 or GFSv14 is statisti-

cally significant in nearly all thresholds on day 1 at

ASOS/AWOS stations and all thresholds at SNOTEL

stations. Consistent with the ETS for absolute thresh-

olds, however, GFSv15.0 closes the gap by day 3. The

gap between GFSv15.0 and GFSv14 also increases from

day 1 to day 3, for which it is significant at a 95% con-

fidence level for all event sizes at SNOTEL stations.

Similar to the results for absolute thresholds, ETS is

higher at lowland ASOS/AWOS sites than upland

SNOTEL sites.

In summary, all three global models produce too

much and too frequent precipitation at lowland

FIG. 13. Day-1 (dashed) and day-3 (solid)GFSv14 (blue),GFSv15.0 (black), andHRES (red)

frequency bias as a function of event size at (a) ASOS/AWOS and (b) SNOTEL stations.

Number of events sampled into each bin shown in inset histograms. Green band shows 0.85–

1.20 range defined as near neutral by the authors.Whiskers display 95% confidence intervals as

determined using bootstrap resampling.
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ASOS/AWOS stations. Biases at upland SNOTEL sta-

tions are closer to neutral or dry, with theHRES tending

to produce too little precipitation overall and too in-

frequent larger events. Model skill scores illustrate

superior performance of the HRES at both lowland

ASOS/AWOS stations and upland SNOTEL stations,

especially if one validates based on percentiles, which

helps account for the HRES dry bias. The difference

between GFSv15.0 and GFSv14 is small on day 1 but

increases by day 3 when the former has also closed the

gap relative to HRES. Based on the traditional met-

rics used here, the shorter-range (day 1 and day 3)

FIG. 14. Bivariate histograms of forecast and observed precipitation at ASOS/AWOS stations for (a) day-1

GFSv14, (b) day-3 GFSv14, (c) day-1 GFSv15.0, (d) day-3 GFSv15.0, (e) day-1 HRES, and (f) day-3 HRES. Green

(blue) dots denote mean modeled (observed) event size for each observed (modeled) event size in each bin. Dots

not shown for bins with ,100 events.
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precipitation forecasts produced by GFSv15.0 produce

comparable to superior forecasts to GFSv14, although

they lag HRES. ETS for all three global models is higher

at lowland ASOS/AWOS sites than upland SNOTEL

sites for both absolute and percentile thresholds.

4. Conclusions

This study has examined the performance of newly

upgraded NCEP operational models compared to

their predecessors focusing on precipitation over the

western CONUS during the 2017/18 cool season.

Results of the evaluation can be condensed into two

principal conclusions. First, changes in bias and per-

formance between HRRRv2 and HRRRv3 are small.

In the case of performance, HRRRv3 produced mar-

ginally higher ETS at lowland and upland stations,

although the difference was not significant at a 95%

confidence level. Second, as evaluated using tradi-

tional metrics, GFSv15.0 produces forecasts that are

FIG. 15. As in Fig. 14, but for SNOTEL stations.
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comparable to (day 1) or superior to (day 3) GFSv14,

but that still lag HRES, although the gap closes from

day 1 to day 3. All three global models (GFSv15.0,

GFSv14, and HRES) produce too much and too fre-

quent lowland precipitation, but exhibit near-neutral

or dry biases in upland regions, with the HRES pro-

ducing the largest underprediction of larger upland

precipitation events. These elevation-dependent bia-

ses may reflect insufficient terrain representation,

which yields weakened orographic influences on pre-

cipitation. Superior performance of the HRES is espe-

cially apparent if one verifies using event percentiles,

which helps account for these biases. Operational fore-

casters should be aware of the general biases described

here, but also that there are variations by location and

event size.

Comparison of results at ASOS/AWOS stations

with SNOTEL stations indicates that ETS is higher

in the lowlands than the uplands for both versions of

the HRRR and all versions of the global models.

This suggests a decrease in skill from the lowlands to

the uplands across several forecast systems. We

note, however, that bias ratios and frequency biases

are also higher over the lowlands than the uplands,

FIG. 16. Day-1 (dashed) and day-3 (solid)GFSv14 (blue), GFSv15.0 (black), andHRES (red) verificationmetrics

as functions of absolute thresholds at (left) ASOS/AWOS and (right) SNOTEL stations. (a),(b) Hit rate. (c),(d)

False alarm ratio. (e),(f) Equitable threat score. Whiskers display 95% confidence intervals as determined using

bootstrap resampling.
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and wetter forecasts tend to produce higher ETS

(e.g., Mason 1989; Hamill 1999). In addition, metrics

like ETS are dependent on climatology (Hamill and

Juras 2006), and the precipitation climatologies of

the lowlands and uplands are fundamentally differ-

ent. Further work is needed to better understand

the causes of lower ETS in the mountains and

whether or not this reflects inherent differences in

predictability between lowland and mountain cool-

season precipitation events.

These results are, however, based on a single cool

season characterized by near- or slightly above-average

precipitation in the northwest CONUS and below-

average precipitation in the southwest CONUS. Thus,

precipitation events in the northwest CONUS have a

strong influence on overall results. Nevertheless, the

HRRR and GFS biases described here for upland

SNOTEL stations are broadly consistent with those

identified by Gowan et al. (2018) in the then operational

versions of the HRRR and GFS during the 2016/17 cool

season (Gowan et al. 2018 did not examine HRRR and

GFS performance at lowland ASOS/AWOS stations).

Large station-by-station variations in bias ratio were

identified at ASOS/AWOS stations, but likely reflect

undersampling. Although a multi-cool-season model

comparison study is desirable, it is not always possible

with operational modeling systems. GFSv15.0 refor-

ecasts are, however, available for three cool seasons,

although for brevity we focused this paper on the 2017/18

cool season given that HRRRv2 and HRRRv3 were

only available that cool season.

This study also utilized observations from the

ASOS/AWOS and SNOTEL networks, which en-

ables comparison of model performance in lowland

and upland areas. Both station types, however, likely

experience undercatch, which is not accounted for

here, and the quality control and assessment of 24-h

precipitation amounts at SNOTEL stations is diffi-

cult and lacks data precision. A major advantage of

the SNOTEL network, however, is its high density

in mountain areas that are poorly sampled by radar

and exhibit large uncertainties in gridded precipita-

tion analyses. Future validation studies over the west-

ern CONUS should continue to leverage the SNOTEL

network (and potentially other mountain observing

stations) to better identify model biases and perfor-

mance characteristics in upland areas where fore-

casts are critical for recognizing impacts related to

FIG. 17. Observed (gray) and forecast day-1 (dashed) and day-3 (solid) GFSv14 (blue), GFSv15.0 (black),

and HRES (red) absolute and percentile precipitation thresholds at (a) ASOS/AWOS and (b) SNOTEL

stations.
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flooding, debris flows, avalanches, and road mainte-

nance and safety.
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